

Predicting and analyzing memorization within fine-tuned LLM

PROJECT PITCH

Jérémie Dentan¹, Davide Buscaldi^{1, 2}, Aymen Shabou³, Sonia Vanier¹ ¹LIX (École Polytechnique, IP Paris, CNRS), ²LIPN (Sorbonne Paris Nord), ³Crédit Agricole SA

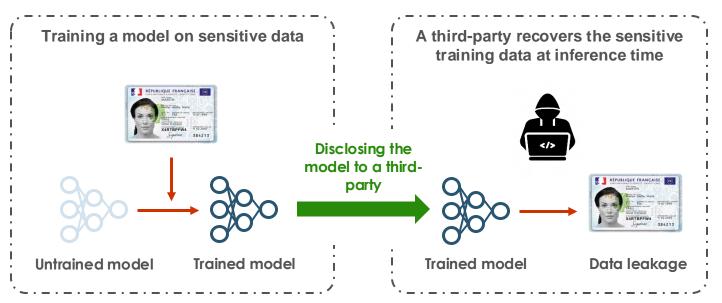
Acknowledgements



This work was granted access to the HPC resources of IDRIS under the allocation 2023-AD011014843 made by GENCI.

Context: LLM memorize their training data

Large Language Models (LLM) memorize some training samples, which can be extracted at inference.



This can happen:

- By mistake, by anyone using the model
- On purpose, by an adversary willing to extract as much data as possible

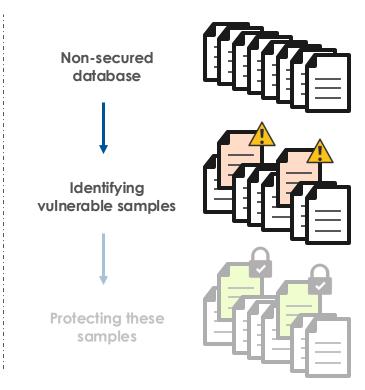
Our goal: predicting memorization

We developed an auditing tool for practitioner to inspect models under development.

Threat model:

- A practitioner want to audit a model under development at minimal cost, before training.
- They perform some tests to identify vulnerable samples before they are memorized.
- The long-term objective is to protect these elements at minimal cost.

→ In this paper, we only focus on the auditing tool. The protection methods are left as future work.



Strong empirical results

We validated our approach in five different empirical settings, leading to strong results.

- We evaluated our approach on Gemma 7B,
 Mistral 7B and Llama 2 7B models fine-tuned for classification tasks (MMLU, ARC, ETHICS).
- We provide default hyperparameters for practitioners to adapt to any classification task.
- We obtain strong results: FPR of 15.3% for a TPR of 88.7%.

CONCLUSION: Memorization can be predicted effectively from the early stages of training.

