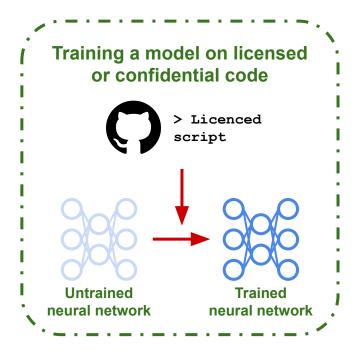


Responsible Al Summit

Towards security and privacy in document understanding models

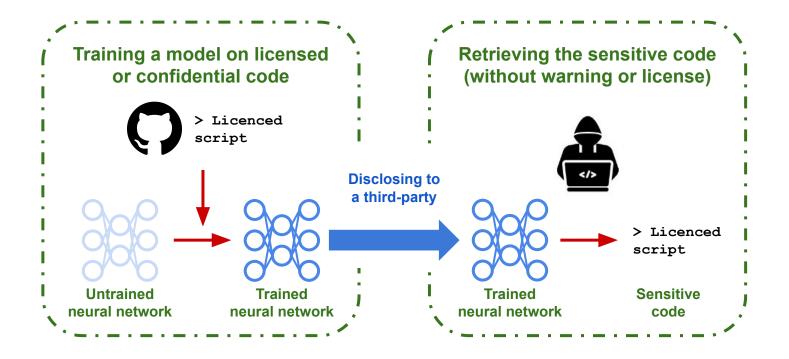
Sonia Vanier and Jérémie Dentan – École Polytechnique

Introduction

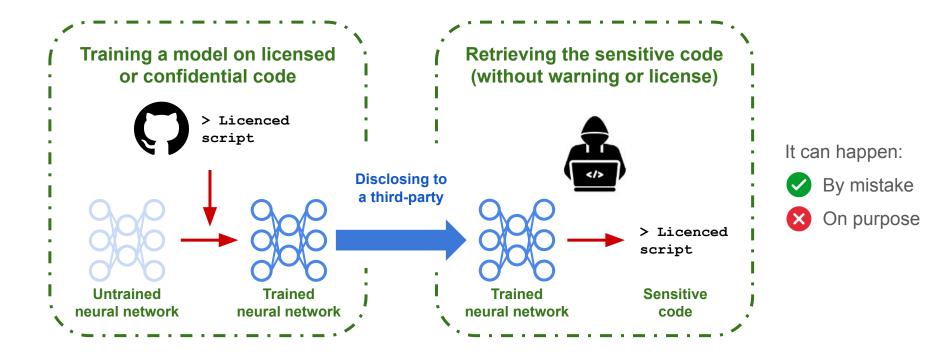

- LLM are trained on massive data scraped from the net
- It is infeasible to properly sanitize these datasets to remove personal or sensitive information
- Models have been attacked in production, exposing sensitive data used during training

- → We develop a new privacy attack against document understanding models
- → We use it to analyze model's vulnerability
- → Long-term goal: protect models at minimal cost

Privacy issues in Language Models

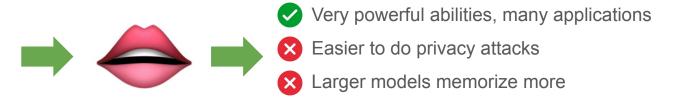

Language models memorize information from their training set and can disclose it at inference time.

Privacy issues in Language Models


Language models memorize information from their training set and can disclose it at inference time.

Privacy issues in Language Models

Language models memorize information from their training set and can disclose it at inference time.



What kind of models are vulnerable to privacy attacks ?

Decoder-only, generative language models

Tasks: next token prediction (Gemini, Llama, Copilot, GPT etc.)

[1] Nicholas Carlini, Daphne Ippolito, et al. Quantifying Memorization Across Neural Language Models. ICLR. 2023.

What kind of models are vulnerable to privacy attacks ?

Decoder-only, generative language models

Tasks: next token prediction (*Gemini, Llama, Copilot, GPT etc.*)

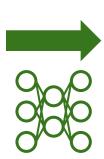
Very powerful abilities, many applications

Easier to do privacy attacks

Larger models memorize more

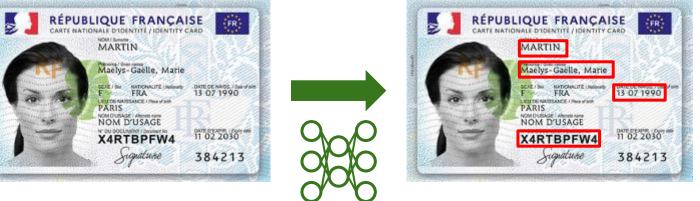
Encoder-only, discriminative language models

Tasks: classification, entity extraction, etc. (BERT, RoBERTa, etc.)


Specific applications
Harder to do privacy attacks
Underexplored domain

We developed a new attack against some encoder-only models

The first reconstruction attacks against document understanding models



Document understanding model ≈ BERT + 2D position encoding + visual features (text) (layout) (image)

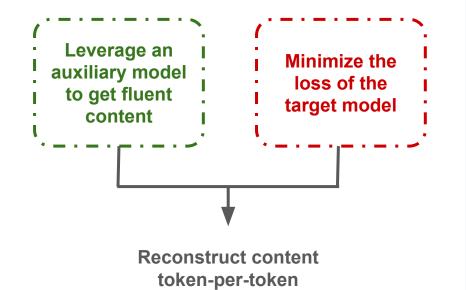
We developed a new attack against some encoder-only models

The first reconstruction attacks against document understanding models

Document understanding model ≈ BERT + 2D position encoding + visual features (text) (layout) (image) 1. Name 2. Surname 3. Pirth data

- 3. Birth date
- 4. Document ID

Our attack


How do we reconstruct data ?

[2] Jérémie Dentan, Arnaud Paran, Aymen Shabou. Reconstructing training data from document understanding models. Usenix Security. 2024.

Our attack

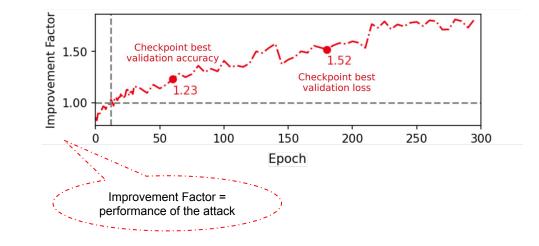
How do we reconstruct data ?

Strong empirical results

- Experiments in many settings (2 architecture, 2 datasets, 4 tasks)
- Perfectly reconstruct up to 4.1% of the fields in the training set (including names, dates, addresses, 7-digit numbers...)

[2] Jérémie Dentan, Arnaud Paran, Aymen Shabou. Reconstructing training data from document understanding models. Usenix Security. 2024.

Insight #1: Does our attack require overfitting?


No, it does not.

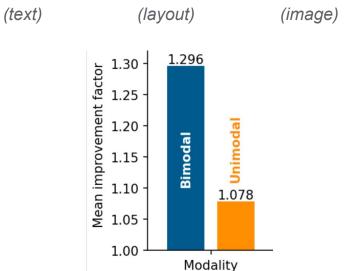
Insight #1: Does our attack require overfitting?

No, it does not.

- Memorization starts well before overfitting.
- Overfitting contributes to memorization, but it is not necessary.
- Consistent with other works such as [3]

Insight #2: Does the visual modality contribute to the attack?

Yes, it does.


Insight #2: Does the visual modality contribute to the attack?

Yes, it does.

• Pixel/token associations are memorized by the model.

Document model

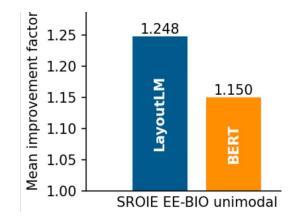
≈ BERT + 2D position encoding + visual features

Responsible Al Summit

Insight #3: Does the layout contributes to the attack?

Yes, it does.

Coogle Co


Responsible Al Summit

Insight #3: Does the layout contributes to the attack?

Yes, it does.

• Layout/token associations are memorized by the model.

Conclusions

- Many types of model memorize their training data
- We developed the first privacy attack against document models

- Attacks are realistic even without overfitting
- Multimodality increases the privacy risk

Thank You

Acknowledgements

This work received financial support from Crédit Agricole SA through the research chair "Trustworthy and responsible Al" with École Polytechnique.