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Towards security and privacy in
document understanding models
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Introduction

e LLM are trained on massive data
scraped from the net

e ltisinfeasible to properly sanitize
these datasets to remove
personal or sensitive information

e Models have been attacked in
production, exposing sensitive
data used during training
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We develop a new privacy
attack against document
understanding models

We use it to analyze
model’s vulnerability

Long-term goal: protect
models at minimal cost
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Privacy issues in Language Models

Language models memorize information from their training set and can disclose it at inference time.

[ Training a model on licensed -

- or confidential code :
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Privacy issues in Language Models

Language models memorize information from their training set and can disclose it at inference time.
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Privacy issues in Language Models

Language models memorize information from their training set and can disclose it at inference time.
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It can happen:

Q By mistake
Q On purpose
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What kind of models are vulnerable
to privacy attacks ?
Decoder-only, generative Q Very powerful abilities, many applications

language models - - € Easier to do privacy attacks
Tasks: next token prediction

(Gemini, Llama, Copilot, GPT etc.) ° Larger models memorize more

[1] Nicholas Carlini, Daphne Ippolito, et al. Quantifying Memorization Across Neural Language Models. ICLR. 2023.
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What kind of models are vulnerable
to privacy attacks ?

Decoder-only, generative Q Very powerful abilities, many applications

language models - - € Easier to do privacy attacks
Tasks: next token prediction

(Gemini, Llama, Copilot, GPT etc.) ° Larger models memorize more

Q Specific applications

- Q Harder to do privacy attacks

€ Underexplored domain

Encoder-only, discriminative

language models -
Tasks: classification, entity extraction, etc.

(BERT, RoBERTa, etc.)

[1] Nicholas Carlini, Daphne Ippolito, et al. Quantifying Memorization Across Neural Language Models. ICLR. 2023.
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We developed a new attack against
some encoder-only models

The first reconstruction attacks against document understanding models
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Document understanding model
= BERT + 2D position encoding + visual features

(text) (layout) (image)

[2] Jérémie Dentan, Arnaud Paran, Aymen Shabou. Reconstructing training data from document understanding models. Usenix Security. 2024.
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Sample ID card licensed Etalab Open License 2.0 by Agence Nationale des Titres Sécurisé.

We developed a new attack against

some encoder-only models

The first reconstruction attacks against document understanding models
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Document understanding model
= BERT + 2D position encoding + visual features

(text)

(image)

[2] Jérémie Dentan, Arnaud Paran, Aymen Shabou. Reconstructing training data from document understanding models. Usenix Security. 2024.

.".\ INSTITUT

POLYTECHNIQUE

"V DE PARIS

N

Google
Responsible Al

Summit

Name
Surname
Birth date
Document ID
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Our attack

How do we reconstruct data ?

Leverage an |
. auxiliary model
| to get fluent
i content |

Y

Reconstruct content
token-per-token

I Minimize the
loss of the I
target model

L

[2] Jérémie Dentan, Arnaud Paran, Aymen Shabou. Reconstructing training data from document understanding models. Usenix Security. 2024.
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Our attack
How do we reconstruct data ? Strong empirical results

e Experiments in many settings
Le_"_erage an | I (2 architecture, 2 datasets, 4 tasks)
auxiliary model -

i to get fluent

| Minimize the

loss of the | e Perfectly reconstruct up to 4.1% of the

content | . target model | fields in the training set
e — e e ‘. e _ (including names, dates, addresses, 7-digit
,_ l numbers...)

Reconstruct content
token-per-token

[2] Jérémie Dentan, Arnaud Paran, Aymen Shabou. Reconstructing training data from document understanding models. Usenix Security. 2024.
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Insight #1: Does our attack
require overfitting?

No, it does not.

[2] Jérémie Dentan, Arnaud Paran, Aymen Shabou. Reconstructing training data from document understanding models. Usenix Security. 2024.
[3] Chiyuan Zhang, Samy Bengio, et al. Understanding deep learning requires rethinking generalization. ICLR. 2017.



E%S Google
7 '2 'r;'ésu.?ié;c::nmus Respopsible Al
o (O o Summ it
Insight #1: Does our attack
[ ] [ ] [ ]
require overfitting?
No, it does not.
e Memorization starts well before *§ i PATILTY
s - A,
overfitting. 21501 | waminaccumaorn, 7\~ s
E | .,'v'\’\' Checkpoint best
e Overfitting contributes to 2 100 _L{f‘_\_’_\'_ 123 validationloss
memorization, but it is not - . . . . .
necessary o 0 50 100 150 200 250 300
"::"\\ Epoch
e Consistent with other works e T
e Improvement Factor = !
such as [3] ‘\,\_ performance of the attack e

[2] Jérémie Dentan, Arnaud Paran, Aymen Shabou. Reconstructing training data from document understanding models. Usenix Security. 2024.
[3] Chiyuan Zhang, Samy Bengio, et al. Understanding deep learning requires rethinking generalization. ICLR. 2017.
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Insight #2: Does the visual modality
contribute to the attack?

Yes, it does.

[2] Jérémie Dentan, Arnaud Paran, Aymen Shabou. Reconstructing training data from document understanding models. Usenix Security. 2024.
[3] Chiyuan Zhang, Samy Bengio, et al. Understanding deep learning requires rethinking generalization. ICLR. 2017.
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Insight #2: Does the visual modality
contribute to the attack?

Document model
~ BERT + 2D position encoding + visual features

(text) (layout) (image)

Yes, it does.

e Pixel/token associations are
memorized by the model. 1.296

Bimodal
o ;
S Unimodal

=

Mean improvement factor

=B B = B = =
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Modality

[2] Jérémie Dentan, Arnaud Paran, Aymen Shabou. Reconstructing training data from document understanding models. Usenix Security. 2024.
[3] Chiyuan Zhang, Samy Bengio, et al. Understanding deep learning requires rethinking generalization. ICLR. 2017.
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Insight #3: Does the layout
contributes to the attack?

Yes, it does.

[2] Jérémie Dentan, Arnaud Paran, Aymen Shabou. Reconstructing training data from document understanding models. Usenix Security. 2024.
[3] Chiyuan Zhang, Samy Bengio, et al. Understanding deep learning requires rethinking generalization. ICLR. 2017.
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Insight #3: Does the layout
contributes to the attack?

Document model

Yes, it does. ~ BERT + 2D position encodin
— text / t
e Layout/token associations are (text) (fayou)
memorized by the model.
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[2] Jérémie Dentan, Arnaud Paran, Aymen Shabou. Reconstructing training data from document understanding models. Usenix Security. 2024.
[3] Chiyuan Zhang, Samy Bengio, et al. Understanding deep learning requires rethinking generalization. ICLR. 2017.
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« Many types of model memorize « Attacks are realistic even
their training data without overfitting
- We developed the first privacy « Multimodality increases the

attack against document models privacy risk
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